Asymmetric bias in user guided segmentations of brain structures
نویسندگان
چکیده
Brain morphometric studies often incorporate comparative hemispheric asymmetry analyses of segmented brain structures. In this work, we present evidence that common user guided structural segmentation techniques exhibit strong left-right asymmetric biases and thus fundamentally influence any left-right asymmetry analyses. In this study, MRI scans from ten pediatric subjects were employed for studying segmentations of amygdala, globus pallidus, putamen, caudate, and lateral ventricle. Additionally, two pediatric and three adult scans were used for studying hippocampus segmentation. Segmentations of the sub-cortical structures were performed by skilled raters using standard manual and semi-automated methods. The left-right mirrored versions of each image were included in the data and segmented in a random order to assess potential left-right asymmetric bias. Using shape analysis we further assessed whether the asymmetric bias is consistent across subjects and raters with the focus on the hippocampus. The user guided segmentation techniques on the sub-cortical structures exhibited left-right asymmetric volume bias with the hippocampus displaying the most significant asymmetry values (p<<0.01). The hippocampal shape analysis revealed the bias to be strongest on the lateral side of the body and medial side of the head and tail. The origin of this asymmetric bias is considered to be based in laterality of visual perception; therefore segmentations with any degree of user interaction contain an asymmetric bias. The aim of our study is to raise awareness in the neuroimaging community regarding the presence of the asymmetric bias and its influence on any left-right hemispheric analyses. We also recommend reexamining previous research results in the light of this new finding.
منابع مشابه
Automatic Segmentation and Probe Guidance for Real-Time Assistance of Ultrasound-Guided Femoral Nerve Blocks.
Ultrasound-guided regional anesthesia can be challenging, especially for inexperienced physicians. The goal of the proposed methods is to create a system that can assist a user in performing ultrasound-guided femoral nerve blocks. The system indicates in which direction the user should move the ultrasound probe to investigate the region of interest and to reach the target site for needle insert...
متن کاملFrom Imprecise User Input to Precise Vessel Segmentations
Vessel segmentation is an important prerequisite for many medical applications. While automatic vessel segmentation is an active field of research, interaction and visualization techniques for semi-automatic solutions have gotten far less attention. Nevertheless, since automatic techniques do not generally achieve perfect results, interaction is necessary. Especially for tasks that require an i...
متن کاملAutomatic brain tumor segmentation by subject specific modification of atlas priors.
RATIONALE AND OBJECTIVES Manual segmentation of brain tumors from magnetic resonance images is a challenging and time-consuming task. An automated system has been developed for brain tumor segmentation that will provide objective, reproducible segmentations that are close to the manual results. Additionally, the method segments white matter, grey matter, cerebrospinal fluid, and edema. The segm...
متن کاملIntracranial volume estimated with commonly used methods could introduce bias in studies including brain volume measurements
In brain volumetric studies, intracranial volume (ICV) is often used as an estimate of pre-morbid brain size as well as to compensate for inter-subject variations in head size. However, if the estimated ICV is biased by for example gender or atrophy, it could introduce errors in study results. To evaluate how two commonly used methods for ICV estimation perform, computer assisted reference segm...
متن کاملFully Bayesian joint model for MR brain scan tissue and structure segmentation.
In most approaches, tissue and subcortical structure segmentations of MR brain scans are handled globally over the entire brain volume through two relatively independent sequential steps. We propose a fully Bayesian joint model that integrates local tissue and structure segmentations and local intensity distributions. It is based on the specification of three conditional Markov Random Field (MR...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- NeuroImage
دوره 59 2 شماره
صفحات -
تاریخ انتشار 2012